Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method
نویسندگان
چکیده
The negative gradient direction to find local minimizers has been associated with the classical steepest descent method which behaves poorly except for very well conditioned problems. We stress out that the poor behavior of the steepest descent methods is due to the optimal Cauchy choice of steplength and not to the choice of the search direction. We discuss over and under relaxation of the optimal steplength. In fact, we study and extend recent nonmonotone choices of steplength that significantly enhance the behavior of the method. For a new particular case (Cauchy-Barzilai-Borwein method), we present a convergence analysis and encouraging numerical results to illustrate the advantages of using nonmonotone overrelaxations of the gradient method.
منابع مشابه
R-Linear Convergence of Limited Memory Steepest Descent
The limited memory steepest descent method (LMSD) proposed by Fletcher is an extension of the Barzilai-Borwein “two-point step size” strategy for steepest descent methods for solving unconstrained optimization problems. It is known that the Barzilai-Borwein strategy yields a method with an R-linear rate of convergence when it is employed to minimize a strongly convex quadratic. This paper exten...
متن کاملQuasi-Newton Methods for Image Restoration
Many iterative methods that are used to solve Ax = b can be derived as quasi-Newton methods for minimizing the quadratic function 1 2 xAAx−xAb. In this paper, several such methods are considered, including conjugate gradient least squares (CGLS), Barzilai-Borwein (BB), residual norm steepest descent (RNSD) and Landweber (LW). Regularization properties of these methods are studied by analyzing t...
متن کاملOn Spectral Properties of Steepest Descent Methods
In recent years it has been made more and more clear that the critical issue in gradient methods is the choice of the step length, whereas using the gradient as search direction may lead to very effective algorithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of the Hessian matrix. On the other hand, the convergence of the classical Cauchy stee...
متن کاملHandling Nonpositive Curvature in a Limited Memory Steepest Descent Method
We propose a limited memory steepest descent method for solving unconstrained optimization problems. As a steepest descent method, the step computation in each iteration only requires the evaluation of a gradient of the objective function and the calculation of a scalar stepsize. When employed to solve certain convex problems, our method reduces to a variant of the limited memory steepest desce...
متن کاملThe Riemannian Barzilai-borwein Method with Nonmonotone Line-search and the Matrix Geometric Mean Computation
The Barzilai-Borwein method, an effective gradient descent method with cleaver choice of the step-length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line-search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian Barzilai-Borwein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 21 شماره
صفحات -
تاریخ انتشار 2002